13 research outputs found

    BiofilmQuant: A Computer-Assisted Tool for Dental Biofilm Quantification

    Full text link
    Dental biofilm is the deposition of microbial material over a tooth substratum. Several methods have recently been reported in the literature for biofilm quantification; however, at best they provide a barely automated solution requiring significant input needed from the human expert. On the contrary, state-of-the-art automatic biofilm methods fail to make their way into clinical practice because of the lack of effective mechanism to incorporate human input to handle praxis or misclassified regions. Manual delineation, the current gold standard, is time consuming and subject to expert bias. In this paper, we introduce a new semi-automated software tool, BiofilmQuant, for dental biofilm quantification in quantitative light-induced fluorescence (QLF) images. The software uses a robust statistical modeling approach to automatically segment the QLF image into three classes (background, biofilm, and tooth substratum) based on the training data. This initial segmentation has shown a high degree of consistency and precision on more than 200 test QLF dental scans. Further, the proposed software provides the clinicians full control to fix any misclassified areas using a single click. In addition, BiofilmQuant also provides a complete solution for the longitudinal quantitative analysis of biofilm of the full set of teeth, providing greater ease of usability.Comment: 4 pages, 4 figures, 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2014

    A Statistical Modeling Approach to Computer-Aided Quantification of Dental Biofilm

    Full text link
    Biofilm is a formation of microbial material on tooth substrata. Several methods to quantify dental biofilm coverage have recently been reported in the literature, but at best they provide a semi-automated approach to quantification with significant input from a human grader that comes with the graders bias of what are foreground, background, biofilm, and tooth. Additionally, human assessment indices limit the resolution of the quantification scale; most commercial scales use five levels of quantification for biofilm coverage (0%, 25%, 50%, 75%, and 100%). On the other hand, current state-of-the-art techniques in automatic plaque quantification fail to make their way into practical applications owing to their inability to incorporate human input to handle misclassifications. This paper proposes a new interactive method for biofilm quantification in Quantitative light-induced fluorescence (QLF) images of canine teeth that is independent of the perceptual bias of the grader. The method partitions a QLF image into segments of uniform texture and intensity called superpixels; every superpixel is statistically modeled as a realization of a single 2D Gaussian Markov random field (GMRF) whose parameters are estimated; the superpixel is then assigned to one of three classes (background, biofilm, tooth substratum) based on the training set of data. The quantification results show a high degree of consistency and precision. At the same time, the proposed method gives pathologists full control to post-process the automatic quantification by flipping misclassified superpixels to a different state (background, tooth, biofilm) with a single click, providing greater usability than simply marking the boundaries of biofilm and tooth as done by current state-of-the-art methods.Comment: 10 pages, 7 figures, Journal of Biomedical and Health Informatics 2014. keywords: {Biomedical imaging;Calibration;Dentistry;Estimation;Image segmentation;Manuals;Teeth}, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6758338&isnumber=636350

    Portable Bacterial Identification System Based on Elastic Light Scatter Patterns

    Get PDF
    Background Conventional diagnosis and identification of bacteria requires shipment of samples to a laboratory for genetic and biochemical analysis. This process can take days and imposes significant delay to action in situations where timely intervention can save lives and reduce associated costs. To enable faster response to an outbreak, a low-cost, small-footprint, portable microbial-identification instrument using forward scatterometry has been developed. Results This device, weighing 9 lb and measuring 12 × 6 × 10.5 in., utilizes elastic light scatter (ELS) patterns to accurately capture bacterial colony characteristics and delivers the classification results via wireless access. The overall system consists of two CCD cameras, one rotational and one translational stage, and a 635-nm laser diode. Various software algorithms such as Hough transform, 2-D geometric moments, and the traveling salesman problem (TSP) have been implemented to provide colony count and circularity, centering process, and minimized travel time among colonies. Conclusions Experiments were conducted with four bacteria genera using pure and mixed plate and as proof of principle a field test was conducted in four different locations where the average classification rate ranged between 95 and 100%

    Multi-spectral detector and analysis system

    No full text
    A multi-spectral detection and analysis system detects and classifies a targeted sample. The system may include a light source that causes the targeted sample to luminesce. A light dispersion element disperses the luminescence to a photodetector in a photodetector array. Each photodetector in the array transmits a signal indicating a portion of the spectrum to a multi-channel collection system. The multi-channel collection system processes the signal into a digital signal and forms the digital signal into a spectral signature. A processor analyzes the spectral signature and compares the spectral signature to known spectral signatures to identify the targeted sample

    Multi-spectral detector and analysis system

    No full text
    A multi-spectral detection and analysis system detects and classifies a targeted sample. The system may include a light source that causes the targeted sample to luminesce. A light dispersion element disperses the luminescence to a photodetector in a photodetector array. Each photodetector in the array transmits a signal indicating a portion of the spectrum to a multi-channel collection system. The multi-channel collection system processes the signal into a digital signal and forms the digital signal into a spectral signature. A processor analyzes the spectral signature and compares the spectral signature to known spectral signatures to identify the targeted sample

    Multispectral cytometry of single bio-particules using a 32-channel detector

    No full text

    Development of a Smartphone-Integrated Reflective Scatterometer for Bacterial Identification

    No full text
    We present a smartphone-based bacterial colony phenotyping instrument using a reflective elastic light scattering (ELS) pattern and the resolving power of the new instrument. The reflectance-type device can acquire ELS patterns of colonies on highly opaque media as well as optically dense colonies. The novel instrument was built using a smartphone interface and a 532 nm diode laser, and these essential optical components made it a cost-effective and portable device. When a coherent and collimated light source illuminated a bacterial colony, a reflective ELS pattern was created on the screen and captured by the smartphone camera. The collected patterns whose shapes were determined by the colony morphology were then processed and analyzed to extract distinctive features for bacterial identification. For validation purposes, the reflective ELS patterns of five bacteria grown on opaque growth media were measured with the proposed instrument and utilized for the classification. Cross-validation was performed to evaluate the classification, and the result showed an accuracy above 94% for differentiating colonies of E. coli, K. pneumoniae, L. innocua, S. enteritidis, and S. aureus

    Hyperspectral cytometry at the single-cell level using a 32-channel photodetector.

    No full text
    Despite recent progress in cell-analysis technology, rapid classification of cells remains a very difficult task. Among the techniques available, flow cytometry (FCM) is considered especially powerful, because it is able to perform multiparametric analyses of single biological particles at a high flow rate-up to several thousand particles per second. Moreover, FCM is nondestructive, and flow cytometric analysis can be performed on live cells. The current limit for simultaneously detectable fluorescence signals in FCM is around 8-15 depending upon the instrument. Obtaining multiparametric measurements is a very complex task, and the necessity for fluorescence spectral overlap compensation creates a number of additional difficulties to solve. Further, to obtain well-separated single spectral bands a very complex set of optical filters is required. This study describes the key components and principles involved in building a next-generation flow cytometer based on a 32-channel PMT array detector, a phase-volume holographic grating, and a fast electronic board. The system is capable of full-spectral data collection and spectral analysis at the single-cell level. As demonstrated using fluorescent microspheres and lymphocytes labeled with a cocktail of antibodies (CD45/FITC, CD4/PE, CD8/ECD, and CD3/Cy5), the presented technology is able to simultaneously collect 32 narrow bands of fluorescence from single particles flowing across the laser beam in <5 ÎĽs. These 32 discrete values provide a proxy of the full fluorescence emission spectrum for each single particle (cell). Advanced statistical analysis has then been performed to separate the various clusters of lymphocytes. The average spectrum computed for each cluster has been used to characterize the corresponding combination of antibodies, and thus identify the various lymphocytes subsets. The powerful data-collection capabilities of this flow cytometer open up significant opportunities for advanced analytical approaches, including spectral unmixing and unsupervised or supervised classification

    Rapid Food Authentication Using a Portable Laser-Induced Breakdown Spectroscopy System

    No full text
    Laser-induced breakdown spectroscopy (LIBS) is an atomic-emission spectroscopy technique that employs a focused laser beam to produce microplasma. Although LIBS was designed for applications in the field of materials science, it has lately been proposed as a method for the compositional analysis of agricultural goods. We deployed commercial handheld LIBS equipment to illustrate the performance of this promising optical technology in the context of food authentication, as the growing incidence of food fraud necessitates the development of novel portable methods for detection. We focused on regional agricultural commodities such as European Alpine-style cheeses, coffee, spices, balsamic vinegar, and vanilla extracts. Liquid examples, including seven balsamic vinegar products and six representatives of vanilla extract, were measured on a nitrocellulose membrane. No sample preparation was required for solid foods, which consisted of seven brands of coffee beans, sixteen varieties of Alpine-style cheeses, and eight different spices. The pre-processed and standardized LIBS spectra were used to train and test the elastic net-regularized multinomial classifier. The performance of the portable and benchtop LIBS systems was compared and described. The results indicate that field-deployable, portable LIBS devices provide a robust, accurate, and simple-to-use platform for agricultural product verification that requires minimal sample preparation, if any

    Portable bacterial identification system based on elastic light scatter patterns

    No full text
    Abstract Background Conventional diagnosis and identification of bacteria requires shipment of samples to a laboratory for genetic and biochemical analysis. This process can take days and imposes significant delay to action in situations where timely intervention can save lives and reduce associated costs. To enable faster response to an outbreak, a low-cost, small-footprint, portable microbial-identification instrument using forward scatterometry has been developed. Results This device, weighing 9 lb and measuring 12 × 6 × 10.5 in., utilizes elastic light scatter (ELS) patterns to accurately capture bacterial colony characteristics and delivers the classification results via wireless access. The overall system consists of two CCD cameras, one rotational and one translational stage, and a 635-nm laser diode. Various software algorithms such as Hough transform, 2-D geometric moments, and the traveling salesman problem (TSP) have been implemented to provide colony count and circularity, centering process, and minimized travel time among colonies. Conclusions Experiments were conducted with four bacteria genera using pure and mixed plate and as proof of principle a field test was conducted in four different locations where the average classification rate ranged between 95 and 100%.</p
    corecore